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Introduction

CLOCS (Computer with LOw Context Switch time) is an experimental computer system
designed at the University of North Carolina at Chapel Hill by Mark Davis and Bill 0.
Gallmeister. CLOCS is designed to explore the performance issues associated with a machine
that can context switch extremely rapidly by virtue of minimal CPU state to save and restore
on a context switch. This emphasis strongly influences the design of the operating system.
which is built to support finely grained scheduling and dynamic extensibility of the system.

This document collects the papers describing the CLOCS operating system. An overview
of the kernel design is first presented, followed by a detailed specification of the entry points
to the kernel. Chapter 3 is a brief discussion of scheduling in the CLOCS kernel. The final
chapter is an enumeration of the signals used in the operating system. ,.,,
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Chapter 1

An Overview of the Kernel
Design

CLOCS (COmputer with LOw Context-Switching time) is a machine being designed at the
University of North Carolina at Chapel Hill, by Mark Davis and Bill 0. Gallmeister. CLOCS
is an experimental system, both hardware and software, created to explore the consequences
of a design that permits extremely rapid context switches. The CLOCS Operating System is
designed to exploit the unique features of the CLOCS hardware to meet specific performance
and qualitative goals: real-time responsiveness, fair multiprogramming, and dynamic recon-
figurability. This paper describes the most basic part of the machine's operating system -
the CLOCS Kernel.

While the CLOCS kernel is only the lowest layer of the operating system, it provides
the necessary building blocks to meet the design goals of the system as a whole. This
document emphasizes the overall concepts that relate to these goals, deferring more detailed
kernel descriptions to [12]. Section 1 discusses the goals of the system. Section 2 provides
an overview of the strategies used to meet these goals. Descriptions of the modules of the
CLOCS kernel are given in section 3.

1.1 The Goals of the CLOCS Kernel

1.1.1 Real-Time Response

A major objective of the CLOCS Operating System is to provide real-time response, meaning
that processes must be able to respond to events, generated by software or hardware, within
a specified (and assumed small) amount of time.

2
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Real-Time Systems are Difficult. Real-time response is hard to achieve in operating
systems, because not only must the answer be right, it must be delivered on time. Like most
software, typical multiprogramming operating systems run with little regard for external,
real-world time. In designing a real-time system, the software designer must pay close
attention to the amount of time taken in all sections of code - asymptotic order notation
will not suffice! The designer must assure that interrupt response times are bounded, must
support guaranteed scheduling and completion by external time, and must carefully analyze
the timings of interacting parts of the system to assure that the timing constraints of the
system are met. In sum, real-time constraints make programming harder in genera420],
because they add a whole new dimension - the time dimension - to the problem space being
explored.

1.1.2 Fair Multiprogramming

Real-time response has been achieved in other systems, but usually at the expense of fairness
- the processes requiring real-time response are treated preferentially to other, non-real-time
processes. The second design goal of the CLOCS operating system is that it provide fair
multiprogramming for all processes. A scheduling algorithm is called "fair" if all processes
are given equal consideration by the scheduler at all times[8]. Fair multiprogramming is
difficult to reconcile with real-time capability, since real-time processes may have special
requirements - they may need to be scheduled more often, or perhaps allowed to run longer,
in order to have any value whatsoever! Reconciling "fair" scheduling wi.h demands for
real-time response is discussed in detail in [101.

1.1.3 Dynamic Extensibility

Software is a malleable substance, and quite often software systems are altered "on the fly" as
they are being used: functional modules are added to, and subtracted from a running system
as it is running. This is especially true in real-time programming, where the programming is
often associated with some unique data collection device that must be specially driven[17].
Small, frequent changes to software components should not require recompiling and rebooting
the operating system. Therefore, the CLOCS operating system must expand and contract
dynamically as it runs. This allows new drivers or specially expanded functionality to be
added to the system as needed, removed when the machine resource is better spent elsewhere,
or changed when it is wrong.

A second reason for dynamic extensibility is the advantage of programming an application
on the target machine for the application(18]. Programming on the target machine requires
that the machine support a full development environment, but such an environment is only
useful when the system is being developed. When a production system is running, a full
development environment is just baggage. It must be possible to link in the capabilities of
a full-featured operating system on demand, then jettison 'iem when they are not required.
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1.1.4 The CLOCS Machine

In a multiprogramming system, processes are frequently context-switched, i.e., the running
process is stopped, its state saved and another process started. Machines with large amounts
of state in their processors have historically achieved better rates of throughput, but they
also context-switch more slowly than machines with less state. In the past, throughput of
a single process has been the metric for gauging a machine's performance, but as multipro-
gramming systems become more common, throughput of multiple, colicurrent processes is
increasingly important. Context switching speed is an important component of multipro-
grammed computer performance.

The CLOCS project is studying the tradeoffs between single- and multi-process through-
put involved in the design of a system - both hardware and software - which targets fast
context switching as its major performance metric. Since the novel design of the hardware
has influenced the kernel design, a short overview of the hardware is in order.

The CLOCS CPU

To switch context, a machine must store all internal registers and replace them with new in-
formation. In order to allow fast context switches, the CLOCS machine has only one register,
called the state word; storing it and reloading its contents takes exactly two instructions.

Because there are no other registers, the CLOCS operation set is small - there is no
need for load or store operations, and the lack of registers also makes for fewer addressing
modes. This dramatically simplifies the instruction set: CLOCS supports only 20 different
operations!

This minimal amount of CPU state impacts the programming model for the machine.
The bare minimum information is stored in the state word: a process ID, the program
counter, and flags, including the current interrupt mask. A great deal of process state, such
as stack and frame pointers, is normally maintained in a machine's registers. In CLOCS,
this state is kept in well-known memory locations.

The CLOCS MMU

Real-time systems, and increasingly, general-purpose computing systems must run hundreds,
if not thousands, of processes concurrently. Virtual memory has proven to be an important
and useful tool for building reliable multiprocess systems, due to the separation and pro-
tection it offers. We feel that virtual memory is vital to the reliability of multiprogrammed
systems. Therefore, CLOCS supports segmented, paged virtual memory with its MMU. A
process ID, stored in the state word, uniquely determines a set of segment and page mappings
in the MMU; changing this hardware process ID changes the MMU as a side effect. Although
most addressing is assumed to be in one of two default segments (one for instructions and
one for data), processes can address data in any segment using extended addressing modes.

The MMU is organized as a single large table, supplying process ID, segment number,
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virtual page, physical page, and protection bits in a single tuple. The MMU is an associative
memory, and the hardware does not enforce any ordering of the tuples. Since process ID
does not determine a fixed number of segments, processes can access an arbitrary number of
segments, including segments shared with other processes. The flexible layout of the MMU
allows easy memory sharing between processes, but also allows inconsistency. For instance,
process ID + segment ID + virtual page number do not functionally determine a unique
tuple, making it possible to have two contradictory mappings in the CLOCS MMUI The
memory management software must ensure that the MMU remains consistent.

Instruction

\ 12
Status 'SEG

Ser°I  .$MM
Zero -

Segment

PID SID FLAGS VPAGE PPAGEDefault Iseg E
D e a l ,s e .......... °°:..... ....... ... ...................... ...................... ..................
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IND IRECT SI OFSET j 1_
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(high order 24 bits are a 30
!ignored) Address

Physical Memory

The CLOCS MMU



CLOCS OS Reference Documents - Gallmeister 6

Event Handling. Events (traps and interrupts) are handled by vectoring; an event
vector is a state word that is loaded into the CPU when the associated event occurs. The
CLOCS machi"e provides 1024 separate vectors, half for traps and half for interrupts. This
large number Jf vectored events speeds event handling because the software doesn't need to
work a.s hard to figure out which event occurred. That information is largely implicit in the
event ,ector itself.

The architecture of the CLOCS machine nd its MMU are described in a number of
papers [6,4,3,5]. Readers interested in detailed architectural descriptions are referred to
these papers.
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1.2 Achieving the Goals of the CLOCS Kernel

The CLOCS kernel uses a few simple strategies to meet its goals. The general strategies are
described below; the next section gives more specific details on the kernel itself. Together,
these strategies provide the necessary building blocks for achieving the goals of the whole
system.

1.2.1 Obtaining Real-Time Responsiveness

Obtaining real-time responsiveness is the single largest goal of the CLOCS operating system,
and its realization requires the most wor!,. Each module of a real-time system must cooperate
in order to achieve the performance goals of the system. The modules of the CLOCS kernel
work together in the following ways.

Uninterruptible Path Lengths Are Short

If any process requires long uninterruptible periods of time, then real-time performance
becomes hard to achieve: rapid response to an event cannot be guaranteed because some
process may be just starting a long section of uninterruptible code. The UNIX' system, for
instance, h-ts a hard time doing real-time processing because it is monolithic, and processes
running in the kernel can take many milliseconds to complete. In contrast, the CLOCS
operating system consists of short, uninterruptible paths through the kernel, connected by
sections where interrupts are allowed. At these "checkpoints", rescheduling of the processor
can occur, allowing rapid response to events.

Processes Can Run To Completion

CLOCS allows a process to indicate when it must run to completion in order to guarantee
that it will finish its real-time work. When a process is allowed to run to completion, it
cannot be preempted until it allows itself to be.

More is Stored; Less is Computed

Alan Jay Smith, of Berkeley, has said that any program can be made five times as swift to
run, at the expense of five times the storage space. While his numbers may be questioned, his
premise may not: programs can be made faster by precomputing and storing results. Where
the tiadeoffs can be made, the CLOCS Operating System achieves faster execution by using
more elaborate data structures. For instance, the data structures used by the scheduling
algorithm are optimized to speed the choice of which process to run next.

'UNIX is a trademark f AT&T Communications
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Small Modules Speed the Kernel

The CLOCS kernel is built from small, effective modules that provide simple abstractions:
virtual memory, processes, and interprocess communication. These smaller, more modest
modules run faster than megaliths because they do less. Since the kernel can be dynamically
extended a.d contracted, enhanced function can be built on top of the kernel as required by
a particular application. Meanwhile, the modest scope of the kernel allows it to run swiftly.

1.2.2 Combining Responsiveness and Fairness

The second important goal of the CLOCS operating system is to combine real-time respon-
siveness with fair multiprogramming. Scheduling heuristics typically attempt to provide
one sort of behavior, either fairness or real-time responsiveness. The CLOCS scheduling
algorithm, in contrast, takes both goals into account.

New Scheduling Ideas

Scheduling is often implemented using a priority-based scheme in which a single number
denotes a process's "value". The priority can be manipulated according to the process's
behavior[8]. Priority-based scheduling provides fair scheduling behavior for non-real-time
processes. Unfortunately, the value of a real-time process is not a static quantity, and may
vary in a time-dependent, not process-behavior-dependent fashion. Thus, priority schedulers
have a difficult time supporting real-time tasks. In contrast, real-time systems often prac-
tice deadline scheduling, where processes are scheduled in order of shortest deadline first.
Variants of the deadline scheduler abound, but all of them schedule processes strictly based
on their deadlines. Deadline schedulers do not try to be fair, and in fact will not schedule
a process without a deadline - i.e. a non-real-time process - unless there are no real-time
processes ready to run.

Any scheduler that targets only a single dimension (time, priority, etc.) will fail at
scheduling some other class of processes. By providing more information pertaining to the
scheduling problem, the scheduler can make more informed choices about which processes
must run at any given time. Elaborate scheduling algorithms have been designed to more
accurately model process values, and therefore schedule them better, where better is defined
by the objectives of the particular scheduling algorithm. In some complicated systems,
as many as five numbers have been used to denote the time-varying value of a real-time
process[13].

In the CLOCS system, a unified process value model is used, denoting each process's value
and its deadline, along with indications of how long the process will need to run, whether
there is any value in running the process past its deadline, and whether the process should
be allowed to run to completion. These attributes allow more delicate scheduling decisions
and are sufficient for proper scheduling of the majority of processes. Dynamic manipulation
of the quantities further enhances the system's responsiveness.
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1.2.3 Achieving Extensibility

The third goal, achieving extensibility, requires the ability to add and subtract software
components on a running system, much as fault-tolerant computer systems allow hardware
to be added and removed dynamically. To solve this problem, the interface between the
parts of the system must be clean and well-defined, facilitating fast, simple changes that allow
dynamic interprocess communication. Breaking the connections and eliminating components
must also be easy. Finally, calling a module that is not present must not result in catastrophic
failure of the operating system!

Object-Oriented Design Provides Clean Interface

The object-oriented paradigm provides a partial solution to the extensibility problem. In
the CLOCS kernel, each object, or "manager", communicates with the other managers and
the user processes through a simple interface. Each manager makes specific entry points
available to the entire system; other processes may only call the manager using those entry
points. The manager can also remove the entry points. Calls to non-existent entry points
are treated as errors, which can be treated by loading the required module, initializing it,
and trying again.

Policy-Mechanism Separation Allows Functional Extension

The object model is a necessary, but not sufficient coidition for extensibility. If the semantics
of the underlying software layers do not allow higher layers to function properly, then ex-
tending the kernel becomes impossible. CLOCS supports policy-mechanism separation: the
lower layers of the kernel cannot implicitly decide policy for upper layers. For instance, the
Memory Manager does not make any decisions based on which process is calling it, because
it is up to the Process Manager to make process-related decisions.
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1.3 Kernel Module Descriptions

The CLOCS system is organized as a set of four modules, each of which implements an
abstraction or service. This hierarchical approach to design offers clean, modular interfaces
and smaller, easy-to-understand software packages[9]. Four modules make up the kernel of
the CLOCS Operating System, each providing basic services on which higher levels will rely.
The four modules that form the CLOGS kernel are:

" The Glue Code: The lowest layer of the CLOCS kernel is the Glue Code. It handles
the details of inter-module communication and exception handling, allowing all other
modules in the system to be integrated into a single machine.

" The Memory Manager: The Memory Manager handles the CLOGS MMU and
provides the abstraction of virtual memory. Virtual memory is necessary for building
reliable multiprocess systems because of the protection and separation it offers.

" The Process Manager: The Process Manager encapsulates the scheduling algorithm
and provides the abstraction of independent processes. The entire CLOCS system is
structured as multiple processes, so a process manager is a basic requirement.

" The Communication Manager: The Communication Manager provides the ab-
straction of inter-process communication. Systems such as real-time applications and
server applications are often structured as multiple processes communicating in a va-
riety of ways. This paradigm is basic enough to merit support at the lowest levels of
the operating system.

The Glue Code provides the most basic level of service, supporting a clean, monitor-like
interface between software modules. The other three modules of the kernel communicate
using the Glue Code. The Memory and Process Managers are at a slightly higher level than
the Glue Code. The Communications Manager is at a still higher level, using the services of
the other two managers.
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Communications
Manager

Memory Process

Manager Manager

Interrupts
Traps

The CLOCS Kernel

1.3.1 How Does This Kernel Meet the System Goals?

Extensibility of the system is supported by the Glue Code, which provides calls to allow
modules to make themselves dynamically available to the rest of the system.

The kernel modules run in a request-driven fashion; a call to one of the managers will
provoke a short, uninterruptible response. When modules communicate with each other,
interrupts may occur, allowing for possible rescheduling. Thus, the uninterruptible paths
through the kernel are only as long as the longest path through any particular manager.
Since each manager performs simple, small tasks, the paths through them are short, and
each call to a manager can be satisfied quickly.

The managers are designed in such a fashion that they store more data than is necessary
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in order to avoid time-consuming recomputations. This design style is most evident in the
Process Manager, described below. In addition, the scheduler implemented by the Process
Manager is designed to meld real-time responsiveness with fair multiprogramming.

1.3.2 A Bottom-Up Description Models Successive Abstractions

The modules of the CLOCS kernel are described from the bottom up, paralleling the suc-
cessive abstractions provided by each module. Since the complete operating system is not
specified, describing the system from the top down is not possible: there is no top!
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1.3.3 The Glue Code

The lowest level of the CLOCS Operating System is called the "Glue Code" because the
routines and data at this level support the connection of other processes, or modules. Con-
ceptually, this module "glues" the others together. The glue code handles intermodule
communication as well as interrupt and trap dispatch. The dynamic extension and contrac-
tion of the system is handled from the glue code, and proper access of user applications to
the kernel is enforced here as well.

Intermodule Communication

To call an entry point in another process, the caller pushes the process ID and entry point
number of the called process on its stack and traps to the Glue Code. The Glue Code checks
the calling process's right to call the entry point and, if permitted, makes the call. If the
specified entry point does not exist, then an error indicator is returned. Notice that three
processes are involved: a caller, the kernel (in the persona of the Glue Code), and the called,
or server, process.

The Glue Code supports intermodule communication by enforcing an explicit interface
for module access. A module, or process, makes entry points available to other processes
by calling the Glue Code and specifying the address of the entry point and the permissions
associated with it, i.e. who may call the entry point. The Caller associates an entry point
number with the entry point address, insulating other processes from the need to know
specific addresses within another process. A process may also remove an entry point it has
previously made available.

A process containing an entry point will be at some point in its execution when the
entry point is called. Entry point calls are handled as if a signal had occurred: the entry is
"serviced" by the called process, which then returns from that entry to whatever processing
it was doing prior to the call. Meanwhile, the called module is blocked. In addition, while
the server process is servicing an entry call, new calls to its entry points are blocked. This is
done to prevent simultaneous access to a single process by other processes, possibly resulting
in inconsistencies.

Traps and System Calls

Inter-module communication traps are one use for traps, but all other traps are to the glue
code, as well. This includes exceptions, such as page faults and divides by zero, and system
calls, which are performed as intermodule calls from user processes to the kernel process.
For all traps, the Glue Code must save the state of the trapping process before jumping to
the appropriate service routine.
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Interrupts

Interrupts (external events caused by things like I/O devices or power failures) are also
handled by the Glue Code. Although the main bulk of interrupt processing is handled by
the kernel proper, the state of the machine prior to the interrupt must be saved, and this is
the job of the Glue Code as well.

Humble Access

"Humble Access" is a term for limiting a process' access to privileged operations. Processes
can ascend to privileged mode only at specified locations in the code. At these locations,
the access rights of the calling process are checked, and its "humble" request for privileged
service is granted or denied. Since the CLOCS Glue Code provides the only entry method
to other modules, it can and does enforce humble access by checking permissions before
permitting entry point calls.

Dynamic Relinking

The abstraction of entry points to other processes allows for easy dynamic relinking of
modules, since the relinking is handled through a central location, the Glue Code. As
an added advantage, calling a nonexistent entry point is treated as an error and not a
catastrophe, so calling modules can be programmed to recover from ill-configured software.
This robust, dynamic relinking capability provides the extensibility required by the CLOCS
Operating System.
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1.3.4 The Memory Manager

Virtual memory is a requirement for building reliable multiprocess systems because of the
separation, protection and ease-of-use a virtual memory system offers. The CLOCS MMU
provides the raw material for implementing efficient, protected virtual memory; however,
it must be carefully managed by software to avoid inconsistencies. The Memory Manager
has responsibility for maintaining correctness of the MMU and of physical pages of memory.
It keeps track of those segments, physical and virtual pages, and process identifiers (PIDs)
which are in use.

Interface to the MMU

As sole access to the MMU, the Memory Manager must also provide efficient, fast access to
the hardware. The size of the MMU, 218 words, is too large for the Memory Manager to
search linearly; so the Memory Manager constructs software structures atop the MMU to
allow swifter access to specific entries.

Segment Allocation

Two different calls allow a process to allocate and deallocate segments. When allocating,
the memory manager determines a free segment and assigns it to the calling process, but no
mention of that segment is made in the MMU, because there is no memory yet associated
with it. When pages of memory are actually allocated within the segment, then the MMU
is modified. When a process frees a segment, the segment is removed from the MMU for
the process, and if no other process is using the segment, it is returned to the free list. It is
an error for a process to try to free its primary instruction or data segments, which are the
ones it requires to run in.

Page Allocation

Processes allocate and free virtual pages within an already-allocated segment. The calls
specify the starting page and a number of pages to allocate or free. Errors are returned if
the process tries to allocate a virtual page that it has already allocated, or if it tries to free
pages that are already free.

Page Sharing

An additional call in the memory manager maps pages of memory from one process into
another process. This call does not enforce any sort of protection between processes, but the
call can only be made by the kernel itself. The mechanism for sharing memory is required
by the Communication Manager, which enforces the policy of shared memory by calling the
Memory Manager in the "right way".
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1.3.5 The Process Manager

Processes are a basic unit of computation. Increasingly, applications ranging from database
systems to resource servers to entire operating systems are being constructed as multiple
processes which communicate to achieve the goals of the system. This paradigm offers
conceptual simplicity as well as increased reliability and fault tolerance. Processes require
support at the lowest levels of the kernel, since the higher levels of the CLOCS system will
themselves be structured as multiple processes. The CLOCS Process Manager provides the
abstraction of processes and encapsulates the process scheduling algorithm. It also manages
process creation, destruction and state changes. Although context switches are done by the
Glue Code, actual processor allocation and dispatch is performed from within the Process
Manager.

Definition of Process

CLOCS defines a process as simply "a schedulable entity" [8]. A process is just a thing that
can be scheduled for execution. A process is named by its Process Control Block (PCB), a
data structure which contains control information about the process: its last recorded state,
what memory it has allocated, its priority and urgency, and so forth.

The operating systems literature mentions two sorts of processes: heavyweight and
lightweight processes. The CLOCS MMU supports one kind just as easily as the other,
and the Process Manager makes no distinction between the two.

Heavyweight Processes. Heavyweight processes are processes which execute in their
own protected address spaces. They are slower to context-switch because they require a full
swap of machine state, including, possibly, some MMU contents and some physical memory.

Lightweight Processes. In contrast, lightweight processes have less baggage of their
own. Multiple lightweight processes inhabit the same shared address space. Lightweight
processes can switch between one another very rapidly because the MMU and memory state
required for each is identical and need not be changed.

Difference Between Heavyweight and Lightweight. In the CLOCS machine, there
is little difference between heavyweight and lightweight processes. Because the CLOCS
MMU contains enough state to cover all of physical memory, memory-resident heavyweight
processes will be as easy to switch to as lightweight processes. However, if the memory
required for a heavyweight process is not present, then the disk must be accessed, and more
time will be required for switching context. Since the CLOCS kernel at this stage does
not specify any disk, swapping, or other higher-level concerns, this distinction will not be
discussed any further. It is sufficient to note that processes can exist in shared or private
address spaces, or even in some combination of shared and private space.



CLOCS OS Reference Documents - Gallmeister 17

Creating Processes. Processes can create other processes. The creating process gives
two "egment numbers, which become the default instruction and operand segments of the
new process. Scheduling parameters and starting address are also specified. The process,
when created, is ready to run and is scheduled as soon as feasible.

Destroying Processes. A process can destroy itself, and the kernel can destroy any
process. When a process is destroyed, its memory is freed and returned to the memory pool
if no other processes are using it, and its PCB is made available to new processes. The
process is removed from scheduling consideration.

Changing Process States. Between the time it is created and the time it is destroyed,
a process will repeatedly switch between the running, ready, and blocked states. At any given
time, only one process is running. Either it is using the processor or the kernel is running
on its behalf. Processes that could be running, but have not been allocated the processor
yet, are called ready. Processes that cannot be run because they are waiting for something
are called blocked processes.

Scheduling

Changing process states, and the decision of which ready process becomes the running pro-
cess, is called scheduling. In order to achieve both real-time performance and fair multipro-
gramming, the CLOCS kernel supports an elaborate scheduling system.

"Just In Time" Scheduling. The scheduling algorithm exemplifies a concept that has
become popular in manufacturing and inventory control technology called "Just In Time"
scheduling. In this method, processes that have to complete by a certain time are scheduled
to run at the very last minute. In the warehouse, this leads to reduced inventories and a
more efficient operation. In the CLOCS Operating System, by fitting non-real-time execution
into the cracks not occupied by real-time tasks, "Just In Time" scheduling provides better
response times to non-real-time processes at little or no cost to the real-time processes.

Priority, Urgency, and Quantum. In most multiprogramming operating systems,
scheduling is based on priority. Processes have a single attribute, their priority, that deter-
mines their importance relative to all other processes. The most important processes always
go first. While priority-based scheduling is conceptually simple and easy to implement, pri-
ority alone cannot adequately reflect the nature of the scheduling problem. A priority does
not state explicitly when a process should run; that decision depends on the priority of all
the other processes in the system. Thus, it is tricky and unreliable to perform time-based
scheduling using only priority.

For instance, a process may not be very important, but may need to run very soon
lest it lose all value. Should that process's priority suddenly be raised to enforce its rapid
tunning? If so, how high? And how will it be lowered again? How low? And what if some
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other process, which doesn't need to run at any particular time, can be run before the other
process absolutely has to be run? These problems can only be expressed clumsily (if at all!)
using a single priority number. Because there is no way to state the programmer's desire that
a process run within a certain deadline, systems are created with process priorities balanced
together like a house of cards to provide proper responsiveness. The smallest change in the
system or in the environment can bring the house of cards tumbling down[13I.

Another sort of scheduling algorithm is deadline scheduling in which processes have dead-
lines by which they must complete. The process with the closest deadline runs soonest.
Deadline scheduling has two significant problems. First, it fails to schedule non-real-time
processes (that is, any process with no real-time constraints on its scheduling) since they
have no deadline other than "as soon as possible". In many systems, real-time processes,
such as data acquisition and physical control tasks, coexist in a machine with non-real-time
processes, such as user queries into the database being produced by the real-time application.

More importantly, deadline scheduling fails badly when the processing load exceeds the
processor capability since it continues to schedule and run processes that cannot possibly
meet their deadlines, either because the deadline is too close or already past[131. By wasting
processor time on processes that will have no value, the deadline scheduler allows more
processes to become too late; these are scheduled in turn, causing still more processes to
become late!

The CLOCS Operating System uses three numbers to schedule its processes. A priority
reflects the process's importance in the scheme of things. Urgency is the time, measured in
clock ticks, by which the process absolutely must run. Quantum is the estimated time, again
in clock ticks, the process will take for the run. Only real-time processes have Urgency,
because real-time constraints on their operation are made. All other processes are called
non-real-time processes. The quantum is used as a time slice in the case of non-real-time
processes; for real-time processes, the quantum is taken literally and is used to determine
exactly when the process must run.

Blocking. When the running process executes a kernel call that requires it to wait for
some event, such as an interrupt or receipt of a message from another process, it is said to
block. Blocking is the kernel-level mechanism used to implement all process waiting in the
CLOCS Operating System. When the running process blocks, it is removed to the nonready
state and a new running process is chosen. The Process Manager supports calls to block
processes in a multitude of ways, but these entry points are not callable by user processes.
User processes call other kernel modules, which block the user processes in constrained and
well-known fashions.

What Do Processes Block On? Blocked processes are waiting for something, but how
is the occurrence of that something flagged? How is the something identified? In the jar-
gon of the operating systems community, processes block on cookies. A particular cookie
corresponds to some event being awaited by one or more process. The cookie can contain
any value, but a particular value specifies a particular cookie. When processes block, they
block waiting for one or more of these cookies. Other processes can signal the occurrence
of a particular cookie, and all processes waiting for that cookie are notified. Any of those
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processes which do not need to wait for any more cookies become ready and can contend for
the processor. If such a process is a real-time process, its urgency is measured from the time
it becomes ready.

Combinations of Cookies. Processes can wait on more than one cookie, and they can
wait in different ways. A process can wait on the Boolean AND of a number of cookies; in
other words, all those cookies must be unblocked before the process can proceed. In addition,
processes can block on the Boolean OR of multiple cookies.

Scheduling Data Structures. The scheduling data structures are designed to speed
scheduling decisions. Much of the work of scheduling is done when a process is placed in
the data structures, allowing the process manager to quickly decide which process should
become runnable next.

The kernel must be able to determine rapidly which processes are waiting on a given
event because any application consisting of multiple applications is bound to be doing a
great deal of process synchronization, and events are the mechanism used for implementing
process synchronization. Therefore, the determination must be proportional to the number
of processes waiting on that event, rather than proportional to all blocked processes. In
addition, the data structure must be multilinked, because processes can wait on more than
one cookie at a time. A process control block may be accessed based on any of the cookies
it is waiting on.

When a process is moved into the ready state, it is stored in the run queue. Unlike
standard run queues, the CLOCS run queue is structured as two priority queues: one queue
for real-time processes and one queue for non-real-time processes. The non-real-time process
queue is ordered only by priority. The real-time process queue is sorted in reverse order of
(urgency-quantum), so that the process which must run soonest is at the head of the queue.
In addition, the time by which each process must run is stored in a differential fashion while
the processes are on the run queue. Each process has a threshold which is interpreted relative
to the threshold of the process before it on the queue. This avoids the need to update the
whole run queue on each timer interrupt. Within groups of processes that must run by a
certain time, the processes are ordered by priority, most important first.
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processPurgatory

fastQueue
(realtime)

slowQueue
(non-realtime)

currProcess

Scheduling Data Structures

Scheduling Algorithms. The heart of the scheduling algorithm is a decision procedure
that determines which process to run next; the scheduler may also reorder the scheduling
data structures. The scheduler runs whenever a timer interrupt occurs (signaling quantum
expiration), or when the running process voluntarily gives up the processor.

First, the real-time queue is examined. The threshold of the first process on the list is
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decremented by the last quantum used, and if the threshold goes to zero, then the process
becomes the running process. If the threshold of that process has not gone to zero, then the
highest priority process is chosen from the non-real-time queue and it becomes the running
process.

To determine which quantum is used: if the current process is a real-time process, then
its quantum is used without change. If the current process was taken from the non-real-time
queue, then the time-slice given it is either its quantum, or the threshold of the process on
the head of the real-time queue - whichever is smaller. This guarantees that the process on
the head of the real-time queue will be scheduled when its threshold goes to zero.

Decrement the threshold of the most urgent process.
head(fastQueue) .threshold := head(fastQueue) .threshold - lastQuantum;

Determine whether the most urgent process must be run yet.
if (head(fastQueue) .threshold == ZEROTHRESHOLD)

The set of all real-time processes with this urgency must be run now.
currProcess = dequeue (fastQueue);
lastQuantum currProcess.quantum;
run ;

else

There is still time until a real-time process must be run,
so run a non-real-time process.
currProcess dequeue(slowQueue);
lastQuantum = min (currProcess. quantum,

head(fastQueue) .threshold);
run (;

end.

Scheduling Decision Algorithm
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Real-Lime processes that finish their runs before their quantum expires can relinquish the
processor voluntarily. When they do this, they are re-inserted to the real-time run queue for
another run when their urgency indicates it. This provides for periodic processes.

When preemptive rescheduling (a timer interrupt) occurs, the current process must be
re-inserted in the run queue. If the p ocess is a non-real-time process, then its priority is
decreased and quantum is increased, as in a multilevel feedback queue[8], and the process
is reinserted to the non-real-time queue. If the process is a real-time process, then it did
not finish its run before its quantum expired, and this is an error condition. If the process
should still be run, then it is run for another quantum. Otherwise it is destroyed and its
parent is notified. Whether to run a process once its deadline has passed is determined by
a switch settable by the process itself.

Run-To-Completion. In order to guarantee timely execution of some critical furction,
a process may indicate that it is to run to completion, or allowed to run without possibility
of preemption. If the current process is to be run to completion, then all interrupts are
turned off, including the timer. When the process voluntarily relinquishes the processor,
then the scheduler determines how much time has passed and reschedules accordingly. If a
process flagged for run-to-completion generates an exception, then the kernel regains control.
If the process has an error in it resulting in an infinite loop, then the machine will hang.
Run-to-completion mode is not to be used lightly!
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1.3.6 The Communications Manager

Communication is a crucial component of multiprocess systems. It makes no sense to
structure an application as multiple processes if those processes have no way to interact.
Therefore, communication must be supported at a basic level in the CLOCS system. The
Communications Manager supports the abstraction of interprocess communication, handling
the low-level details of mapping pages from one process to another, blocking processes and
awakening them appropriately, and copying data to and from process's address spaces.

Three basic communications models are used in nearly all systems: signals, mailboxes,
and shared memory. The CLOCS Communications Manager supports all three.

Signals

Signals are the cheapest communication method to implement and use because a signal's
occurrence carries little information with it. However, more information can be sent than
with UNIX signals.

Delivering Signals. A process signals another process by specifying which signal should
be sent and to which process. The process can optionally provide a one word argument which
will be passed to the target process's signal handler; this allows sign-s to be usbd for passing
short messages. It has been shown that small messages comprise the bulk of most interprocess
communication traffic[2].

Handling Signals. Processes respond to each signal by invoking handler routines. De-
fault handlers exist; their actions range from doing nothing to immediate destruction of
the signaled process, depending on the signal. When a process-specified signal handler is
in place and the associated signal occurs, the process immediately jumps to the handling
routine. Handler routines remain in place until explicitly removed. Most signals can also be
blocked without invoking a handler at all. The default actions for the signals, and the signal
names, are provided in a companion document(1 1].

Masking Signals. While the target process is receiving a signal, new occurrences of
that signal are ignored, with the exception of the first occurrence of such a signal.

Mailboxes

Mailboxes are the second utility for interprocess communication. Messages sent to mailboxes
are of static size, and they must be explicitly retrieved, although multiple processes can share
a single mailbox, and a number of messages can be queued up in the mailbox. By specifying
different mailbox parameters, various useful communications paradigms can be realized.
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Sharing Mailboxes. The discipline for making mailboxes available to other processes
is tricky, so, for the sake of simplicity and familiarity and because it works, CLOCS uses the
same mechanism UNIX uses for connecting sockets[15,16].

Connecting to Mailboxes. Following the UNIX paradigm, a server process first cre-
ates the mailbox, and then places it in a specific systemwide location where other processes
can find it. Finally, it waits (blocks) for other processes to connect to the mailbox, at which
time there is a circuit and the two processes can communicate. The creating process can
also wait for more processes to connect to the mailbox while still allowing communication
with and between the already-connected processes.

Implementing Mailboxes. Mailboxes exist in kernel space and the messages stored
in them are protected by the kernel. When a process creates a mailbox, it specifies all the
attributes of the mailbox: message and queuc sizes, and two important behavioral parame-
ters:

* Stickiness is a switch determining whether messages retrieved from a mailbox are
removed from the mailbox automatically or not. If the mailbox is "sticky" then mes-
sages must be explicitly removed from the mailbox; otherwise they are automatically
removed as they are received.

" Behavior-on-Queue-Full is another switch which determines how the mailbox re-
sponds if a process sends a message to it while its message queue is full. If the sending
is allowed, then the oldest message is deleted; otherwise, the send operation fails.

Once two processes are connected through a mailbox, they can send and receive messages.
A process can block until a message is sent to it, or it can simply check whether a message
is in the mailbox without blocking.

Queue and Message Sizes. A mailbox can accept a number of messages, defined
at mailbox creation time as the queue size. The mailbox behavior when the queue fills is
determined by the behavior-on-queue-full attribute of the mailbox.

Messages to a particular mailbox are all of the uniform size specified when the mailbox
is created. The format of the message is not dictated by the kernel.

Different Paradigms for Mailbox-Based Communication. Mailboxes can be made
with widely varying attributes: message size, queue size, behavior-on-queue-full, and mailbox
stickiness. By varying these parameters, different communications models are supported:
these paradigms have been reported to be the communications methods most used in real-
time applications[19,14].

Synchronous Communication Without Data Loss. Synchronous communication
without data loss is implemented by setting queue size equal to one, and by disallowing sends
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to the mailbox when the queue is full. Processes must therefore retrieve any message sent
before a new one can be sent. If a synchronous send-reply discipline is required, then two
mailboxes can be used: one for the sends, and the other for replies.

Asynchronous Communication With Data Loss. Asynchronous communication
with data loss is accomplished by setting the queue size to one and allowing sends to full
mailboxes. Thus, if a message is not retrieved fast enough, it is overwritten by the next
message.

Asynchronous Communication Without Data Loss. When behavior-on-queue-
full disallows sends to full mailboxes, but the queue size is greater than one, the mailbox
supports asynchronous communication without data loss. This lets a certain backlog of
messages accumulate in the mailbox, beyond which the sends to the mailbox fail.

Asynchronous Communication, Losing Aged Data. Asynchronous communica-
tion with loss of aged data is supported by making the queue size greater than one and
allowing sends to full mailboxes. The oldest data will then be lost when the backlog (queue
size) is exceeded.

Sharing Memory

The third communication paradigm is shared memory. Shared memory provides the highest
bandwidth of data transfer, since data is written instantly to the address space of the sharing
processes. Memory can be shared among an arbitrarily large number of processes.

Calls to Support Shared Memory. A process shares its memory with other processes
by specifying pages of memory that are available to other processes, subject to access per-
missions. The segment, starting page, and number of pages to share are given in the call, and
the process is blocked until another process requests to share the memory. By specifying the
ID of the sharing process, the correct segment number, starting page, number of pages and
access mode (read-only or read-write), one process requests shared memory from another
process. The pages of memory can be mapped into the requesting process's address space
at any location that is not already occupied by pages of memory. The requesting process
indicates the access mode it wants for the pages: read-only or read-write. The request is
granted or denied based on the permissions stated by the sharing process.

Synchronizing Access to Shared Memory. Access to shared memory must be syn-
chronized using some scheme, such as semaphores or monitors. CLOCS mailboxes can be
used to implement semaphores. In addition, the blocking behavior of calls through the Glue
Code makes implementation of monitors straightforward, using a separate process for each
monitor.
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Persistence of Shared Memory. Shared memory is persistent for the life of all of
the sharing processes - if the original process frees the pages of shared memory, the shared
memory still remains, until the last process is done with it.
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1.4 Current and Future Work

This section briefly summarizes the current work being done on the CLOCS kernel and
machine, and speculates on future work that may be undertaken.

1.4.1 Kernel Implementation

The kernel as specified is being implemented by a team of students in a software engineering
class. The kernel is being built to run on Sun Microsystems workstations under "test rigs",
which will allow the function of the kernel to be tested before a simulator for the CLOCS
machine is built. When the kernel and simulator are fully constructed, context-switching
and other benchmark programs will be run to measure the performance of the entire system
against commercially-available machines. If simulation studies indicate merit, then a proto-
type CLOCS system will be built and used for further experimentation. The kernel will be
extended with additional functional modules necessary for running actual applications and
the hypotheses of the group will be tested out under real circumstances.



Chapter 2

Kernel Modules Specification

2.1 Overview

The CLOCS project is investigating the tradeoffs incurred in designing an architecture whose
major objective is achieving extremely low context switch times. We have designed an archi-
tecture, CLOCS (Computer with LOw Context Switch time), which can theoretically switch
contexts at a rate orders of magnitude greater than a Sun workstation or VAX minicomputer.

The CLOCS architecture has made tradeoffs in order to achieve such low context switch
times. In particular, all operations are memory-to-memory; there is but one register, and
there is no specialized computational capability that would require loading/unloading of state
information. The CLOCS machine will not provide optimal performance for single-threaded,
computationally intensive applications. It is more suited towards applications where events
provoke small, fast responses.

The CLOCS architecture makes it possible to drastically reduce the overhead necessary to
run multitasking applications. Many of the tasks usually associated with context switching
- saving and restoring processor state, saving and restoring MMU state - have been distilled
out of the architecture.

2.1.1 Real-Time and Server Applications

As part of this research, we are looking at applications which will benefit from such a machine.

Real-time applications are often constructed as a large number of communicating pro-
cesses. If a real-time system of this nature is run on a uniprocessor machine, then context
switching behavior becomes of critical importance.

Real-time applications, though, are only a special case of a more general class of problems
which the CLOCS architecture can benefit. This is the class of systems which:

28
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" are structured as a large number of active processes

" require effective emulation of a multiprocessor

The value of the "large number" of active processes is a fuzzy one; more relevant is
the number of processes requiring the processor per unit time. The larger the number of
processes requiring the processor in an interval of time, the higher the frequency of context
switching will be. The amount of time occupied by context switching rises; beyond some
threshold, the processor is spending most of its time simply moving from one process to
another.

Examples of other applications that might benefit from the CLOCS architecture are:

" real-time systems

" network disk servers

" communications servers

2.l.2 Operating System Required

The CLOCS architecture is unique in the universe of computer architectures. The TMS9900
is the closest thing to it that we have found.

An operating system provides the abstaction of a virtual machine to the programmer. As
such, modern operating systems bring out and make available the features of an architecture.
Since no modern architecture is oriented towards rapid context switching on a uniprocessor,
we find no existing operating system that will effectively exploit the CLOCS architecture.

We need an operating system which provides rapid context-switching capability, as well
as providing the programmability that current operating systems afford.

2.1.3 A Complete Programming System

A programming system is composed of more than a machine and an operating system.
Language compilers, debuggers, link editors and a host of programming utilities are all
required as well.

The CLOCS project has a cross-compiler for the C language, and work is proceeding on
an assembler/link editor suite. However, these tools are secondary, as the CLOCS machine
is only a paper architecture at present. When it is built, as a simulator or as metal, a
program development environment will be critical. However, this document addresses only
the requirements for the operating system.
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2.2 The CLOCS Operating System

To achieve minimal context switch times, the CLOCS architecture has removed all possible
state from the processor.

2.2.1 Mechanisms for Achieving Rapid Context Switch Rates

The CLOCS operating system will provide rapid context switch rates in the same way: by
removing all possible state from the calculations made by the operating system. Alan Jay
Smith (?), of Berkeley, has said that any program can be made to run five times as fast,
with the side effect of increasing the size of the program by a factor of five. This hyperbolic
claim simply means that algorithms can be made to run faster by storing previous results,
and in general not computing anything that's been computed before.

This discipline will bear fruit in the CLOCS operating system. Switching context will
be accomplished by just loading up a new process ID. State pertaining to processes will be
stared for the lifetime of the process in a readily accessible place, with no special movement
of data required to make another process active.

2.2.2 Policies for Achieving Rapid Context Switch Rates

Simply by providing a mechanism to perform context switched rapidly, we have not guar-
anteed that the operating system will switch context rapidly. Also required are policies to
support the attainment of rapid context switch rates.

Specifically, path lengths through the kernel, and preemptability of the kernel must be
addressed.

Preempting the Kernel

UNIX' is an extremely popular operating system among the scientific community. A number
of groups have attempted to provide UNIX with real-time capabilities to further cater to the
needs of data acquisition and process control applications (VRTX, RTU, POSIX Real-time).
The major hurdle encountered by these groups is the monolithic nature of the UNIX kernel.
This nature of operating systems is not specific to UNIX, and it makes rapid response to
events very hard.

The essential problem is that, once in the kernel for any reason, a path through the kernel
must be traced without interruption, or else the integrity of the operating system can be
compromised. These path lengths can easily require many milliseconds to traverse. During
those times, the kernel may not be pre-empted by a process, no matter what its priority.

'UNIX is a trademark of AT&T Communications.
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The solution to this problem, of course, is to make paths through the kernel shorter,
or alternatively, to segment the paths into component atomic operations, with rescheduling
checkpoints along the way. State-changing operations must be atomic; an operating system
must perform these actions swiftly to achieve real-time responsiveness.

The CLOCS operating system kernel will perform small, rapid changes to the state of the
machine. In between these indivisible operations, rescheduling of the processor may occur.
The kernel itself will always be ready to run, and will in fact be run when the urgency of
real-time tasks passes.

Specific Policies for CLOCS

To obtain rapid atomic operations, we first separate the functionality of the kernel into
modules. Operations within the modules are atomic; in passing from one module to another,
rescheduling may occur.

This policy, as a side effect, also permits the expansion of the operating system at a later
date.

The modules of the CLOCS kernel each implement a specific abstraction which is essential
to the operation of the machine. Three modules are specified to comprise the innermost

.kernel of the CLOCS operating system:

" Memory Management

" Process Management

" Communications Management

In addition, a small amount of glue is specified to hold the pieces of the operating system
together.
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2.3 Memory Management

(Abstraction: Virtual Memory)

The Memory manager provides the interface to the CLOCS MMU. Given the physical
memory of the machine, it provides the abstraction of virtual memory to higher layers.

Routines are provided to allocate and free segments and pages on a per-process basis; an
assitional routine allows changes to the MMU page control bits to support permissions and
to allow processes to influence the paging algorithm.

No checking of process access rights is done at this layer - it is strictly mechanism for
playing with the MMU. In fact, the memory manager does not know what a process is - it
simply associates memory with process IDs.

1. allocatePages:

" PARAMETERS (processld, segmentNumber, starting-page, number-ofpages)

" RETURNS success.or-failure;

* EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processId parameter.

" Allocates the given number of pages from the free page pool. Updates the MMU
for the process identified, so that virtual pages, located in the given segment and
starting with the indicated starting page are mapped through to the allocated
physical pages.

" ERRORS:

- FAILBADSEG: The process doesn't have access to that segment.
- FAIL=PAGEINUSE: One or more of the virtual pages specified are already

mapped through to physical pages.
- FAILNOMEMORY: Not enough physical memory to satisfy the request.

2. freePages:

" PARAMETERS (processId, segmenlNumber, starting-page, number-of.pages)

" RETURNS success-or.failure;

" EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processId parameter.

" Frees the given number of pages from use by the process. Updates the MMU,
invalidating the appropriate virtual pages in the given segment. If no other pro-
cesses are using the pages of physical memory, then they are freed back to the
memory pool. Freed pages are cleared.

" ERRORS:

- FAILBADSEG: The process doesn't have access to that segment.
- FAILoNOPAGES: One or more of the virtual pages specified are already free.

3. allocateSegment:
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" PARAMETERS (processid)

" RETURNS segmeniNumber;

" EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processId parameter.

" Allocates a segment that is currently unused and assigns it to the specified process.

" Used in creating processes, among other things.

" ERRORS:

- FAILNOMEMORY: No free segment exists.

4. freeSegment:

" PARAMETERS (processId, segmentNumber)

" RETURNS success-or-failure;

" EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processId parameter.

" Frees up the specified segment - the process can no longer use it. A side effect is
the freeing of all pages currently in the segment.

" ERRORS:

- FAIL-BADSEG: The process does not have access to that segment.
- FAILPRIMARYSEG: The process is trying to free one of its primary seg-

ments.

5. freeAll:

" PARAMETERS (processId)

* RETURNS success-or-failure;

" EXECUTION: May be issued only by the kernel.

" Frees all segments and pages associated with the process identified.

" ERRORS:

- FAILBADPID: No such process.

6. map:

" PARAMETERS (fromProcessId, fromStarPage, toProcessId, toStartPage, num-
berof-pages, mode)

" RETURNS successor-failure;

" EXECUTION: May be issued only by the kernel.

" Takes the number of physical pages, located at startingPage in the specified seg-
ment of the process named fromProcessld, and maps them into the address space
of the process named toProcessld, starting at toStartPage. The pages are mapped
in with the given access mode.

7. getPageStatus:

" PARAMETERS (processId, segmeniNumber, pageNumber)

" RETURNS pageStats;
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" EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processId parameter.

" Returns the permission and page-control bits associated with this virtual page of
the specified process.

" ERRORS:

- FAIL-BADPID: No such process.

8. setPageStatus:

" PARAMETERS (processId, segmentNumber, pageNumber, pageStats)

" RETURNS success-or-failure;

* EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processld parameter.

" Sets the page control bits for the specified virtual page of the process to the

contents of pageStats.

* ERRORS:

- FAILBADPID: No such process.

- FAIL-BADSTATS: Invalid stats structure.

- FAIL-BADPAGE: The specified process does not have access to the specified
page.

- FAIL.BADSEGMENT: The specified process does not have access to the

specified segment.
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2.4 Process Management

(Abstraction: Processes as Schedulable Entities)

The process manager manipulates virtual pages, associated with process IDs, and pro-
vides the abstraction of schedulable processes. The process manager has responsibility for
the scheduling of the processor, as well as for maintaining process permissions.

In this module, we create the abstraction of a process, and we talk about processes
doing things to other processes. However, notions of communicating with other processes
are avoided. That is the responsibility of the Communications Manager. E.G., we have a
blocking mechanism here, but not an event-signalling mechanism.

In this module, the notions of permissions and UIDs (user IDs) are introduced. User IDs
correspond simply to numbers attached to each process. Permissions are granted or denied
based on strict matching of UIDs. Two processes with identical UIDs can do things to each
other. Processes with non-identical UIDs cannot do things to each other.

As in UNIX, process hierarchies exist. A process that creates other processes is the
parent of those processes. Parents can send signals, etc., to descendant processes even if
those processes have switched effective user IDs.

If a parent process is destroyed, the children can continue. They are signalled (see the
communications manager specification), but that signal can be ignored.

1. createProcess:

* PARAMETERS (iSegmeniNumber, oSegmeniNumber, entryPoint, argument, prt.
ority, urgency)

* RETURNS process-id

" EXECUTION: May be executed by any process: the created process inherits the
user ID of the creating process.

" Creates a new process whose primary Iseg and Oseg are the specified ones. Re-
turns the ID of the new process.

" entryPoint may be set to the pseudovalue ENTRY-FORK, in which case the
new process is an identical copy of the calling process; the calling process is
returned the identity of the created process, while the created process is returned
SUCCESS.

" This routine suffices to create processes distinct from the creating process (a' la'
fork/exec), to create identical but distinct processes (a' la' fork), and to create
identical, nondistinct processes (lightweight processes, for which there is no UNIX
analogue).

" ERRORS:

- FAIL-BA DSEG: Those segments aren't available.
- FAILBADFORK: entryPoint was ENTRY-FORK, but the segments speci-

fied are not the primary segments of the calling process.
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2. destroyProcess:

" PARAMETERS (processid)

* RETURNS success-orfailure

* EXECUTION: May be executed by any process: The process id of the calling
process becomes the processId parameter to the call.

* Removes the process from scheduling consideration. Frees all the memory in use
by the process. Makes its segments available. Updates the MMU, invalidating the
appropriate virtual entries. If no other processes are using the pages/segments of
memory, then they are freed back to the memory pool.

" ERRORS:

- FAILBADPID: No such process.

3. setuid:

" PARAMETERS (processld, Uid)

" RETURNS success.orfailure

" EXECUTION: Can only be executed by the kernel.

" Sets the effective user ID of the process. Afterwards, the process will have all
access rights of that user.

" ERRORS:

- None as yet.

4. switchUid:

* PARAMETERS (processId)

" RETURNS success-or-failure

" EXECUTION: May be executed by any process: the process ID becomes the
processId parameter.

" After a call to setuidO, two effective user IDs exist for the process. switchUid
allows the process to switch back and forth between the two IDs. This allows
setting user ID to a privileged mode for a particular operation, then setting it
back after the operation, to decrease security holes.

" ERRORS:

- FAIL-NOALTERNATE: No alternate effective user ID exists for the process.

5. changePriority:

" PARAMETERS (processid, newPriority)

* RETURNS oldPriority

* EXECUTION: May be executed by any process.

* The spe cified process' priority is changed to the new value. The old value is
returned.

" ERRORS:

- FAILBADPID: No such process.
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- FAILPERMISSION: The sending process does not have permission to change
the other process' priority.

6. changeQuantum:

* PARAMETERS (processId, newQuantum)

" RETURNS oldQuantum

" EXECUTION: May be executed by any process.

* The specified process' quantum (time slice for running the process) is changed to
the new value. The old value is returned.

" ERRORS:

- FAILBADPID: No such process.

- FAIL-PERMISSION: The sending process does not have permission to change
the other process' quantum.

7. changeUrgency:

" PARAMETERS (processId, newUrgency)

" RETURNS oldUrgency

" EXECUTION: May be executed by any process.

" The specified process' urgency (time within which the process must be run) is
changed to the new value. The old value is returned.

" ERRORS:

- FAILBADPID: No such process.

- FAILPERMISSION: The sending process does not have permission to change
the other process' urgency.

8. processStats:

* PARAMETERS (processId)

* RETURNS processControlBlock

" EXECUTION: May be executed by any process.

" Statistics about the process are returned, including: priority, urgency, quantum,
scheduling state, memory statistics, and so forth.

" ERRORS:

- FAILBADPID: No such process.

- FAILPERMISSION: The sending process does not have permission to see
the other process' statistics.

9. getProcessld:

" PARAMETERS ()

" RETURNS processld

* Returns the process ID of the issuing process.

" ERRORS:

- None, as yet.

ENEIi
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10. unBlock:

* PARAMETERS (cookie)

" RETURNS success.or-failure

" EXECUTION: May be executed only by the kernel.
" Wakes up all process waiting on the particular cookie.

" ERRORS:

- None, as yet.

11. sleep:

" PARAMETERS (processId, time)

" RETURNS success-or-failure

" EXECUTION: May be executed by any process. Only the kernel may put other
processes to sleep. User processes can only put themselves to sleep. For all but
the kernel, the ID of the calling process must be the processId parameter.

" The process is sent into the blocked state for the specified time, which is a number
of clock ticks. The elapsing of this interval is considered an event like any other
event a process may block on.

" ERRORS:
- FAIL-PERMISSION: The process does not have permission to put another

process to sleep.

12. blockOrWise:

" PARAMETERS (processId, cookies)

" RETURNS success-or.failure

* EXECUTION: May only be executed by the kernel.

" Sends the process into the blocked state, awaiting unBlockoing of one or more of
the specified events.

" Note: if the process is already blocked on the OR of some events, these events
will be added to the list. If the process is already blocked on the AND of some
events, then the call will fail.

" ERRORS:

- FAIL-BADPID: No such process.
- FAIL-AND WISE: Process is waiting on the AND of some events.

13. blockAndWise:

" PARAMETERS (processId, cookies)

* RETURNS success-or-failure

" EXECUTION: May only be executed by the kernel.

" Sends the process into the blocked state, awaiting unBlockoing of all of the spec-
ified cookies.

" Note: if the process is already blocked on the AND of some cookies, these events
will be added to the list. If the process is already blocked on the OR of some
cookies, then the call will fail.
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*ERRORS:

- FAIL-BADPID: No such process.

- FAIL-.OR WISE: Process is waiting on the OR of same events.
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2.5 Communications Management

(Abstraction: communicating processes via a number of communications paradigms)

There are four means of interprocess communication which the CLOCS operating system
supports: interprocess signalling, events, message passing, and shared memory.

Interprocess signalling consists of the ability for a process to send a signal to another
process. Unlike UNIX signals, signal handlers are passed a parameter of type signalMessage,
which can convey extra information. Signals may result in a number of outcomes:

1. Nothing: a signal can be ignored by a process.

2. Termination: a signal can result in the immediate termination of the process.

3. Handler Response: a signal can result in a particular action.

The routines supporting this ability are signal(), and handleSignal 0 .

Message passing allows messages of fixed size to be passed among processes. Messages are
sent by a process executing the sendMessage 0 system call, which results in a message being
deposited in a mailbox. Processes can wait for messages to appear in mailboxes by use of
the awaitMessage 0 call: they can block awaiting receipt of a message, or they can check for
messages without blocking. Mailboxes are created by the mailboxCreate 0 call. A mailbox is
bound to a system-wide location by the mailboxBind 0 routine; a process may obtain access
to a mailbox by using the mailboxAccess 0 call. For such a call to be successful, the creator
and binder of the mailbox (a single process), must currently be executing a mailboxAccept 0
call. Communication is omnidirectional; any process waiting on a mailbox may receive any
message deposited in the mailbox. However, if a mailbox is created sticky, so the messages
remain in it until removed, then only one process can access the message at a time. Messages
are made available to processes on a first-come, first-served basis; mailboxes can be created,
as well, so that messages remain in the mailbox until explicitly removed by a process. All
processes using a mailbox are peers; any process can send to the mailbox; any can read from
it, and any can remove messages from it 2 . Messages of zero length may be specified as well;
this allows mailboxes to be used as semaphores.

The final form of interprocess communication is shared memory. Calls allow a process to
make its memory available to other processes; an arbitrary number of processes may share
a range of memory. Synchronization of access is the responsibility of the processes, and can
easily be done using a mailbox as a semaphore guarding the entire range of memory.

1. signal:

" PARAMETERS (signalNumber, processId)

" RETURNS success-or-failure
2 Directionality of messages might be better for some applications, but breaks the use of mailboxes as

semaphores.
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" EXECUTION: May be executed by any process.

" Like the UNIX kill() mechanism, this routine sends the specified signal to the
specified process.

* ERRORS:

- FAILBADPID: No such process.
- FAIL-PERMISSION: Permission to signal that process was denied.

2. signalPGroup:

" PARAMETERS (signalNumber, processGroup)

" RETURNS success-or-failure

" EXECUTION: May be executed by any process.

" Like the UNIX killpg 0 mechanism, this routine sends the specified signal to all
processes in the specified process group.

* ERRORS:

- FAILBADGROUP: No such group.
- FAIL-PERMISSION: Permission to signal at least one process in the group

was denied, based on UID-based permissions.

3. handleSignal:

" PARAMETERS (processId, signalNumber, handlerRoutine)

* RETURNS success-or-failure

" EXECUTION: May be executed by any process. The identity of the process
executing the call becomes the processId parameter.

" Analogous to the UNIX signal() call, this routine specifies that, upon receipt of
the named signal, control should pass to the routine handlerRoutine.

" Three pseudoroutines are allowed as well:

- SIG-DIE specifies the signal should kill the process.

- SIGJGN specifies the signal should be ignored.
- SIG-DEFAULT specifies the signal should be handled in the default way

(either SIG-DIE or SIGIGN, depending on the signal).
* Signal handlers, as in 4.2BSD UNIX, are retained until explicitly changed.

" ERRORS:

- FAILBADPID: No such process.
- FAIL-BADSIG: No such signal.

4. mailboxCreate:

" PA RA METERS (messageSize, queueSize, stickiness)

" RETURNS mailboxId

" EXECUTION: May be executed by any process.

" Creates a mailbox. The mailbox is not usable until it it is bound to a system-wide
location using mailboxBind 0 .

* Messages deposited in the mailbox will be of fixed size messageSize.
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" Up to queueSize messages may be deposited before buffers are exhausted.

* If the stickiness parameter is MAILBOX-STICKY, then messages sent to the
mailbox are retained in the mailbox until a process explicitly removes them. If
the parameter is MAILBOXNONSTICKY, then messages are removed from the
mailbox as they are received by processes.

" If the retain parameter is TRUE, then sending messages to that mailbox when
the queue is full will not be successful. If the parameter is FALSE, then sending
messages ,j a mailhox with a full queue will result in the oldest message leing
deleted.

" ERRORS:

- FAILSIZETOOBIG: Message size specified is too large.
- FAILQUEUETOOBIG: Queue size specified is too large.
- FAILNOMEMORY: Out of physical memory.

" analogue of UNIX socket O .

5. mailboxBind:

* PARAMETERS (mailboild, systemAddress)

* RETURNS successor-failum

" EXECUTION: May be executed by any process.

" Binds t- r' "-'x to the specified system address.

" ERRORS:
- FAIL-PERMISSION: Another mailbox has already been bound to that system-

wide location.
- FAILBADMAILBOX: The specified mailbox is invaiid.

" analogue of UNIX bindo .

6. mnailloxAccept:

" PARAMETERS (processld, mailboxld, flags)

* RETURNS success-or-failure

" EXECUTION: May be executed by any process. The identity of the process
executing the call becomes the processld parameter.

" The process is blocked until some other process executes a mailboxAccess() call,
at which point the processes both have access to the mailbox.

" If the call specifies MAILBOX.UNIQUE, then the mailbox will be duplicated
when a connection is made, and communications will proceed through that mail-
box, leaving the original mailbox free to accept more connections.

" ERRORS:

- FAILBADPID: No such process.
- FAIL-PERMISSION: Another mailbox has already been bound to that system-

wide location.
- FAILBADMAILBOX: The specified mailbox is invalid.

" analogue of UNIX listenO/acceptO .
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7. mailboxAccess:

" PARAMETERS (processId, systemAddress)

" RETURNS mailbozld

" EXECUTION: May be executed by any process. The identity of the process
executing the call becomes the processId parameter.

" Allows the specified process access to the mailbox which is accessible through the
specified system address.

" ERRORS:

- FAIL.BADPID: No such process.
- FAILBADMAILBOX: No mailbox is currently bound to the system address.

- FAILCONNREFUSED: Connection refused by the creator of the mailbox.

* analogue of UNIX connect().

8. sendMessage:

" PARAMETERS (processid, maiiboxld, message)

" RETURNS success-or-failure

" EXECUTION: May be executed by any process. The identity of the process
executing the call becomes the processId parameter.

" Sends the included message from the named process to the mailbox. The process
must have bound the mailbox to a system location earlier.

" ERRORS:

- FAIL.BADMAILBOX: The specified process has not placed the mailbox in
a connected state by either the mailboxAccept() or the mailboxAccess 0 call.

- FAILBADPID: No such process.

" analogue of UNIX sendO .

9. awaitMessage:

" PARAMETERS (processld, mailboxld, messageBuffer, timeout)

" RETURNS successor.failure

" EXECUTION: May be executed by any process.

" The specified process is blocked until a message is sent to one of the specified
mailboxes, or until the timeout period is exceeded. All specified mailboxes must
have been bound to system-wide locations earlier.

* ERRORS:

- FAILBADMAILBOX: The specified process has not bound some of the mail-
boxes to system-wide locations by either the bindMailbox 0 or the attachMail-
box() call.

- FAILBADPID: No such process.
- FAILTIMEOUT: No message was received within the timeout period.

" analogue of UNIX recv(BLOCK).

10. checkMessage:
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" PARAMETERS (processId, mailboxid, messageBuffer)

" RETURNS success-orfailure

" EXECUTION: May be executed by any process.

" The specified process retrieves a message if one is present in any of the mailboxes;
the process does not block, though. All specified mailboxes must have been bound
to system-wide locations earlier.

" ERRORS:

FAILB.4 DMA fL B0X: Th- sperified process has not bound some of the mail-
boxes to system-wide locations by either the bindMailbox() or the attachMail-
box() call.

- FAIL.BADPID: No such process.
- FAILNOMESSAGES: No messages were present.

" analogue of UNLX recv(NON.BLOCK).

11. shareMemory:

* PARAMETERS (processld, segmentNumber, pageNumber, numberOfPages, per-
missions)

" RETURNS success-or-failure

" EXECUTION: Can be executed by any process: the ID of the process executing
the call provides the processId parameter.

" Makes a range of memory available for sharing by other processes. The process
dos not block, but rather, is sent a signal when the memory is actually shared
with another process.

" Permissions include read, write, and share, for each of processes in the same group,
and for all other processes.

" If a page of memory is being shared by multiple processes, then the page is not
released until the last process sharing the memory releases the page.

" The process blocks until another process requests access to the shared area.

* ERRORS:

- FAILBADPID: No such process.
- FAIL-ALREADY: Some of the pages specified are already being shared.
- FAIL-BADSEGMENT: The process does not have access to that segment.
- FAILBADPAGE: The process does not have access to one or more of those

pages.
- FAIL-INVALID: The permissions given are bogus.

12. mapInMemory:

* PARAMETERS (processId, sourceProcess, sourceSeg, sourcePage, targetSeg, tar-
getPage, numberOfPages, accessMode)

" RETURNS success.or-failure

" EXECUTION: Can be executed by any process: the ID of the process executing
the call provides the processId parameter.
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" The process requests to map the memory of the target process, in the specified
segment and page, into its own address space at the specified location. Permission
is requested to read or write.

" Once a process has mapped in another page's memory, it can release the memory
by freeing it as if the memory belonged to the process.

" ERRORS:

- FAIL-PERMISSION: Permission denied.

- FAIL.ALREADY: Those pages are already present in the process.

2.6 Glue Code

Abstraction: Objects

The glue code is the lowest level of the kernel code. It is the means by which the different
modules communicate with each other. The glue code performs the following functions:

" Handle intermodule calls and traps

" Support process use of entry points

* Determine, at each intermodule call, whether the calling process can make the partic-
ular call.

" Allow rescheduling and preemption.

2.6.1 Intermodule Communication

Intermodule communication is done through traps (system calls). The calling process spec-
ifies the target process and the entry point and traps into the glue code. The glue code
determines whether the call can be made by that process. If it can, then the glue code
simply context-switches to that place. If the call cannot be made, then the glue code returns
an error to the calling process.

Processes make their entry points avaiable to all processes by notifying the glue code via
the entry call to the glue code.

2.6.2 Traps and Interrupts

The glue code handles some traps (its own system call traps and intermodule communication
traps); but the majority of traps and interrupts will vector directly to the appropriate han-

dler. For instance, timer interrupts vector directly into the process manager for rescheduling
service.
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The glue code permits kernel preemption implicitly because it often runs with interrupts
enabled. Interrupts are disabled when the glue code is processing its own service calls (entry,
unEntry, unProcess); at all other times interrupts can occur. Specifically, on calls from one
kernel module to another, interrupts can occur. Kernel modules themselves always run with
interrupts disabled.

When an interrupt is to vector directly to a user routine, the glue code may well note the
fact and adjust scheduling parameters accordingly - especially if the data structures permit
constant-time updates.

1.q well, a Qpecial calling paradigm should he adopted, wherein the process ID of the
calling process is made an implicit parameter to each externally available call. This facilitates
interprocess communication by making sure that the information is always present.

2.6.3 Glue Code Calls

" entry:

- PARAMETERS (entryPoint, entryNumber, permission)

- RETURNS success.or-failure

- EXECUTION: May be executed by any process.

- The entryPoint, an address in the text space of the process, is made a valid entry
point for intermodule communication. It is addressed with entryNumber. The
permission parameter is used to specify whether any process can call this routine.
or whether it is limited to just the kernel. Only the kernel can limit its entry
points.

- ERR'ORS:

* FAIL-PERMISSION: The process tried to limit access to the entry point
illegally.

* FAIL-ALREADY: This is an entry point already (the entryNumber is already
in use).

" unEntry:

- PARAMETERS (entryNumber)

- RETURNS success-or.failure

- EXECUTION: May be executed by any process.

- The specified entry point is made invalid as an entry point for this process.

- ERRORS:

* FAIL.ALREADY: The entry point is already invalid.

" unProcess:

- PARAMETERS (processld)

- RETURNS success.orfailure

- EXECUTION: May be executed by any process. If the process is not a kernel
process, then its ID must match the processld parameter.
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- Removes all entry points for the specified process.

* FAIL-PERMISSION: A non-kernel process tried to invalidate another pro-
cess' entry points.



Chapter 3

Scheduling: Algorithms and
Ideas

3.1 Requirements

The scheduling algorithm must meet slightly different requirements from other, more stan-
dard scheduling algorithms.

3.1.1 Fine Granularity of Scheduling

One objective of the scheduling algorithm is to allow process scheduling to occur with a finer
granularity than normal.

3.1.2 Fair Multiprogramming

Part of the reason for desiring finer granularity of scheduling is to allow realtime processes to
run at the appropriate time, while still letting non-realtime processes get to the processor.

3.2 Definition of Process

Many definitions of processes have been proposed. We do not need to get involved in the
philosophical issues of what a process exactly is.

In this document, the terms "process" and "task" are used interchangeably.

48
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3.2.1 The "Schedulable Entity"

For the purposes of this document, we refer to a process as "the schedulable entity", after
Deitel(71. A process is defined simply as one of the things we are scheduling. Specifically,
process is denoted by a data structure called a process control block, or pcb.

Attributes of Processes

Processes, as schedulable entities, have a number uL attributes that control exactly how they
are scheduled.

" Priority: Each process has a priority, reflecting its importance relative to other pro-
cesses.

* Urgency: Each process also has an urgency, which determines how quickly it must
be run after becoming ready. A realtime process is denoted by the fact that it has a
urgency that is greater than zero. Non-realtime tasks have urgency zero.

" Interaction of Priority and Urgency: Priority and urgency are not treated exactly
orthogonally. Urgency takes precedence. Processes requiring urgent execution simply
must be r,n. When no process' urgency demands running, then the priorities are
examined to see which t. 'A is the most important.

It is not clear whether non-realtime tasks should receive preferential treatment when
scheduling by priority. This scheduling algorithm will schedule non-realtime tasks
preferentially; the realtime processes will be scheduled by priority only when no non-
realtime tasks are ready to run.

" Quanta: Each process also has a quantum associated with it. This determines how
long the process may be run for, before the operating system will interrupt and resched-
ule.

A non-realtime task's quantum is varied according to its scheduling behavior, as de-
scribed below. A realtime task's quantum is varied as well, but in a different way. The
scheduler wants to provide as much time as the realtime process needs to do its job.
The quantum is interpreted as the estimated run-time of a realtime process.

" Threshold: Urgency and quantum are values that don't change as the process moves
towards scheduling. A realtime process, when it becomes ready, should be run in
(urgency - quantum) clock ticks. This value is stored as the process' threshold. The
threshold is the value that is actually varied while the process is enqueued for the
processor. When the threshold goes to zero, then the process must run.

All time-related quantities, including urgency, quantum, and threshold, are stored in

units of clock ticks for ease of computation.

" RunToCompletion: A realtime process may need to be run to completion whenever
it is run. If so, then the runToCompletion attribute should be set. If it is set, then the
process will be run with all interrupts masked.
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3.2.2 Non-Realtime Processes

Non-realtime processes proceed with no particular urgency, or deadline; they are scheduled
solely on the basis of their priority and their quantum.

3.2.3 Realtime Processes

Realtime processes posess urgency as well as priority; they are scheduled first by their ur-
gency, and second by their priority.

3.3 Scheduling Data Structures

The scheduling time must be made as small as possible to meet CLOCS goal of rapid context-
switching time. The time to determine which process should run next can be reduced by
some clever use of data structures.

3.3.1 Purgatory

Processes that are not runnable are stored in a data structure called purgatory. Processes in
purgatory are blocked on some combination of events, either the AND of events or the OR
of events. One of these events can be a clock time event: when the specified amount of time
pastes, the time event has occurred.

Access Requirements for Purgatory

Given the occurrence of a particular event, finding and updating all processes in purgatory
awaiting that event must happen rapidly. Because a desideratum of realtime systems is that
they respond swiftly to events, this update time is more essential than the time for adding
a process to the structure. Also, removing a process from the structure must be fast.

Access Methods for Purgatory

A multilinked structure of some sort seems indicated. Perhaps multiple hash tables or
multiple trees will prove effective.
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3.3.2 Queues

Runnable processes are stored on two priority queues. One queue, called the Slow Queue,
stores non-realtime processes. The other queue is used for realtime processes, and it is called
the Fast Queue.

Slow Queue

In the slow queue, processes are sorted by priority into levels. Deitel71 calls this scheme a
"multilevel feedback queue". Quanta should be adjustable as process priority decreases.

Fast Queue

In the fast queue, processes are sorted first by urgency, then by threshold, then by priority.
Since urgency is a number of clock ticks that decreases which each timer interrupt, it would
be expensive to go through this entire list adjusting each urgency by a constant value.
Instead, urgency is used as a differential quantity: each process' urgency is treated as a
relative number of ticks, not as an absolute. Thus, if the first process has an urgency of 5,
it must be run in 5 ticks; if the second process has an urgency of 2, then it must be run in
7 ticks.

Access Requirements for the Queues

The slow queue is accessed on the basis of a process' priority. The fast queue is more
complicated. Processes on the fast queue are accessed in order of threshold, then priority.
As well, the fast queue is a differential queue, meaning that the threshold of the process at
the head of the queue can be modified. In addition, there can be a number of processes all at
a given threshold. The total of the quanta for all these processes must be readily available,
in order to determine when that set of processes must be run. In addition, the fast queue
can be accessed by priority, for non-deadline-scheduled tasks (see below).

Priority and Differential Queues

Aho, Hopcroft and Ullman[1] discuss priority queues, but not differential queues. An example
of a priority queue use can be found in the 4.2BSD UNIX code for the routines softclock0

and thmeouto, which manage the list of tasks to be performed in real time. These can be
found in the file sys/kernclock.c; the queue itself is called calliodo.
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3.3.3 Current Process

The current process must be kept track of by some means, either by PID, by pointer, or
explicit copying of the process control block.

3.4 The Scheduling Algorithm

Given the above data structures, the scheduling algorithm is simple.

3.4.1 Use of the Timer

All scheduling breaks are invoked by the timer interrupt. The timer does not interrupt with
a predefined Hertz; rather, by setting the timer to go off in a specified number of ticks, the
scheduler allows variable quanta and support for deadline scheduling.

3.4.2 Moving Processes Around

Processes are moved from Purgatory onto one of the two queues when conditions for their
awakening have been satisfied. If a process is waiting on the AND of some events, it becomes
runnable when they all occur. If a process is waiting on the OR of some events, it is made
runnable when one of those events occurs.

3.4.3 When a Timer Interrupt Occurs

When a timer interrupt occurs, rescheduling may occur. The algorithm keeps track of how
long it has been since the last timer interrupt. This allows the algorithm to update the fast
queue.

If the current process is not a realtime process, then it is inserted back into the Slow
Queue. If it has used its entire quantum, then its priority is reduced and its quantum
increased. If it has not used its entire quantum, then neither its priority nor its quantum

are changed.

If the current process is a realtime process, then its priority is decremented, and the Fast
Queue is examined to see if there is now a process more urgent and more important. If there
is, then that process is run.

This strategy implies that there are times at which a realtime task may not complete by
its deadline. This is acceptable in some circumstances and will be discussed below.
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3.4.4 Deciding Who Gets to Run, and For How Long

Figuring out exactly when a realtime task must be run gets a bit tricky.

3.4.5 Urgent Tasks Go First

The whole idea behind urgency is that the process absolutely has to run. Therefore, when
a process' threshold goes to zero (meaning that zero time remains before the process has to
run), then the process is run. Non-realtime tasks are not even considered for running. Tasks
chosen to run based on thuir thresholds are called deadline-scheduled processes.

Within a given urgency, there can be multiple processes. They all must finish at the
same time. The scheduling algorithm must maintain a total of the estimated time (quanta)
for all of these processes, and schedule so that all the processes finish on time.

3.4.6 "Just In Time" Scheduling

However, when a realtime process' urgency and threshold indicates that it does not need to
be run just yet, there may be no benefit to running it yet. In that case, the highest priority
task is taken from the Slow Queue and run for the minimum of either its quantum, or the
time remaining until the most urgent process must be run.

If there are no processes on the Slow Queue, then the highest priority process on the Fast
Queue is chosen. Whether the process is chosen from the Fast or Slow Queues, it is referred
to as a non-deadline-scheduled process in this context.

Missing Deadlines

When a realtime process is running as the current process and a timer interrupt occurs,
signalling the end of that process' quantum, it means that the process did not finish its work
before its deadline. This is a happening of variable importance. Some tasks may not care
about this. Some may require special action. Some may simply die.

The best action in the CLOCS operating system is to send the process a signal whose
default action is to kill the process. The process can change that action to be whatever it
deems necessary.

3.4.7 Setting Run Times - Interaction of Quantum and Deadline

Once the next process to run has been chosen, the scheduler must determine how long the
process can run for. If the new process is a realtime (I.E. deadline-scheduled) process, then
it is run for its entire quantum, which has hopefully been adjusted to allow it to complete.
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If the new process is not a realtime process, then it is run for its entire quantum only if it
can be run for that long without exceeding some realtime process' deadline. In other words,
non-deadline-scheduled processes are allowed to run for the minimum of their quantum and
the threshold of the most urgent process.

3.5 Interfaces of Scheduling

The scheduling system is visible only from within the process manager. Timer interrupts
vector directly into the process manager, who examines the scheduling state, determinles who

should run next, and performs the context switch to that process.



Chapter 4

Interprocess Signals

4.1 Overview

Signals in the CLOCS Operating System operate only slightly differently from the signals
provided by 4.2BSD UNIX1 As in UNIX, signals can be caught, ignored, or dealt with in
the default manner, which may be either ignorance or process termination. Unlike UNIX,
signals can carry communication through a parameter which is passed to the signal-handling
routine. The parameter is passed to the signal system call, and appears at the signalled
routine as if it were a parameter to a procedure call.

Signals are blocked while a process is executing a system call; also, while a signal is being
handled by a process, other signals of the same type are blocked.

The signal names, descriptions, and many of the default behaviors are derived from UNIX
signals. More signals can be added as required in the future.

4.2 Signals

1. SIGHUP:

" (hangup)

" Default action: termination.

" Parameter: none.

2. SIGINT:

" (interrupt)

" Default action: termination.

I UNIX is a tradenark of AT&T Conmmunications.
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* Parameter: ID of interrupting process.

3. SIGQUIT:

* (quit)

* Default action: termination.

* Parameter: none.

4. SIGILL:

" (illegal instruction)

" Default action: termination.

" Parameter: address of fault.

5. SIGMATH:

" (arithmetic exception)

" Default action: termination.

* Parameter: address of fault.

6. SIGKILL:

" (kill (cannot be caught, blocked, or ignored))

" Default action: termination.

" Parameter: none.

7. SIGBUS:

" (bus error)

" Default action: termination.

" Parameter: none.

8. SIGSEGV:

" (segmentation violation)

" Default action: termination.

" Parameter: address of violation (offending address).

9. SIGPAGE:

" (paging violation)

" Default action: termination.

" Parameter: address of violation (offending address).

10. SIGSTOP:

" (stop (cannot be caught, blocked, or ignored))

" Default action: process is blocked until SIGCONT received.

" Parameter: none.

11. SIGCONT:



CLOCS OS Reference Documents - Gallmeister 57

" (continue after stop (cannot be blocked))

" Default action: process becomes ready again.

" Parameter: none.

12. SIGCHLD:

" (child status has changed)

" Default action: ignored.

" Parameter: ID of changed child process.

13. SIGDEADLINE:

" (deadline of realtime process exceeded)

" Default action: termination.

* Parameter: none.

14. SIGUSRI:

" (user-defined signal 1)

" Default action: ignored.

* Parameter: process-dependent.

15. SIGUSR2:

" (user-defined signal 2)

" Default action: ignored.

" Parameter: process-dependent.

16. SIGUSR3:

" (user-defined signal 3)

" Default action: ignored.

" Parameter: process-dependent.

17. SIGUSR4:

" (user-defined signal 4)

" Default action: ignored.

" Parameter: process-dependent.

18. SIGUSR5:

* (user-defined signal 5)

" Default action: ignored.

" Parameter: process-dependent.

19. SIGUSR6:

" (user-defined signal 6)

" Default action: ignored.
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* Parameter: process-dependent.

20. SIGUSR7:

* (user-defined signal 7)

" Default action: ignored.

* Parameter: process-dependent.

21. SIGUSR8:

" (user-defined signal 8)

" Default action: ignored.

" Parameter: process-dependent.

22. SIGUSR9:

" (user-defined signal 9)

" Default action: ignored.

" Parameter: process-dependent.

23. SIGUSR10:

" (user-defined signal 10)

" Default action: ignored.

" Parameter: process-dependent.
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